FacetClouds: exploring tag clouds for multi-dimensional data
نویسندگان
چکیده
Tag clouds are simple yet very widespread representations of how often certain words appear in a collection. In conventional tag clouds, only a single visual text variable is actively controlled: the tags’ font size. Previous work has demonstrated that font size is indeed the most influential visual text variable. However, there are other variables, such as text color, font style and tag orientation, that could be manipulated to encode additional data dimensions. FacetClouds manipulate intrinsic visual text variables to encode multiple data dimensions within a single tag cloud. We conducted a series of experiments to detect the most appropriate visual text variables for encoding nominal and ordinal values in a cloud with tags of varying font size. Results show that color is the most expressive variable for both data types, and that a combination of tag rotation and background color range leads to the best overall performance when showing multiple data dimensions in a single tag cloud.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملExploring Linked Open Data with Tag Clouds
In this paper we present the contextual tag cloud system: a novel application that helps users explore a large scale RDF dataset. Unlike folksonomy tags used in most traditional tag clouds, the tags in our system are ontological terms (classes and properties), and a user can construct a context with a set of tags that defines a subset of instances. Then in the contextual tag cloud, the font siz...
متن کاملRelevant Clouds: Leveraging Relevance Feedback to Build Tag Clouds for Image Search
Previous work in the literature has been aimed at exploring tag clouds to improve image search and potentially increase retrieval performance. However, to date none has considered the idea of building tag clouds derived from relevance feedback. We propose a simple approach to such an idea, where the tag cloud gives more importance to the words from the relevant images than the non-relevant ones...
متن کاملExploring Linked Data with contextual tag clouds
In this paper we present the contextual tag cloud system: a novel application that helps users explore a large scale RDF dataset. Unlike folksonomy tags used in most traditional tag clouds, the tags in our system are ontological terms (classes and properties), and a user can construct a context with a set of tags that defines a subset of instances. Then in the contextual tag cloud, the font siz...
متن کاملExploiting Tag Clouds for Database Browsing and Querying
We show how tag clouds can be used alongside more traditional query languages and data visualisation techniques as a means for browsing and querying databases. Our approach is based on a general, extensible framework that supports different modes of visualisation as well as different database systems. A number of demonstrator databases and interfaces will be used to show how tag clouds can be u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013